珍奥双迪(大连)健康产业集团有限公司

1、2013年诺贝尔奖获得者迈克尔·莱维特:《核酸建模》

1.Qian L, Winfree E. Scaling up digital circuit computation with DNA strand displacement cascades.Science. 2011; 332:1196–1201. [PubMed: 21636773]

2.Pinheiro AV, Han D, Shih WM, Yan H. Challenges and opportunities for structural DNA nanotechnology. Nat Nanotechnol. 2011; 6:763–772. [PubMed: 22056726]

3.Guo P. The emerging field of RNA nanotechnology. Nat Nanotechnol. 2010; 5:833–842. [PubMed: 21102465]

4.Laing C, Schlick T. Computational approaches to 3D modeling of RNA. J Phys Condens Mat. 2010; 22:283101.

5.Laing C, Schlick T. Computational approaches to RNA structure prediction, analysis, and design.Current opinion in structural biology. 2011:1–13. (**) A recent review on RNA structure prediction (secondary and tertiary). Some current three-dimensional structure prediction tools were compared

and analyzed. [PubMed: 21196111]

6.Pincus DL, Cho SS, Hyeon C, Thirumalai D. Minimal models for proteins and RNA from folding to function. Prog Mol Biol Transl Sci. 2008; 84:203–250. [PubMed: 19121703]

7.Dans PD, Zeida A, Machado MR, Pantano S. A coarse grained model for atomic-detailed DNA simulations with explicit electrostatics. J Chem Theory Comput. 2010; 6:1711–1725.

8.Savelyev A, Papoian GA. Chemically accurate coarse graining of double-stranded DNA. Proc Natl

Acad Sci USA. 2010; 107:20340–20345. [PubMed: 21059937]

9.Knotts TA, Rathore N, Schwartz DC, de Pablo JJ. A coarse grain model for DNA. J Chem Phys.2007; 126

10.Ding F, Sharma S, Chalasani P, Demidov VV, Broude NE, Dokholyan NV. Ab initio RNA folding by discrete molecular dynamics: From structure prediction to folding mechanisms. RNA. 2008;14:1164–1173. (*) Discrete molecular dynamics together with a coarse-grained representation of

RNA is applied to predict RNA structure, and also used to model RNA folding processes.[PubMed: 18456842]

11.Flores SC, Altman RB. Turning limited experimental information into 3D models of RNA. RNA.2010; 16:1769–1778. [PubMed: 20651028]

12.Jonikas MA, Radmer RJ, Laederach A, Das R, Pearlman S, Herschlag D, Altman RB. Coarsegrained modeling of large RNA molecules with knowledge-based potentials and structural filters.RNA. 2009; 15:189–199. [PubMed: 19144906]

13.Cao S, Chen SJ. Physics-based de novo prediction of RNA 3D structures. J Phys Chem B. 2011;115:4216–4226. [PubMed: 21413701]

14.Pasquali S, Derreumaux P. HiRE-RNA: a high resolution coarse-grained energy model for RNA. J Phys Chem B. 2010; 114:11957–11966. (*) An RNA knowledge-based potential that describes bonded and non-bonded interactions using functional forms similar to those in all-atom physicsbased potentials. [PubMed: 20795690]

15.Lu XJ, Olson WK. 3DNA: a versatile, integrated software system for the analysis, rebuilding and visualization of three-dimensional nucleic-acid structures. Nat Protoc. 2008; 3:1213–1227.[PubMed: 18600227]

16.Jonikas MA, Radmer RJ, Altman RB. Knowledge-based instantiation of full atomic detail into coarse-grain RNA 3D structural models. Bioinformatics. 2009; 25:3259–3266. [PubMed:19812110]

17.Sharma S, Ding F, Dokholyan NV. iFoldRNA: three-dimensional RNA structure prediction and folding. Bioinformatics. 2008; 24:1951–1952. [PubMed: 18579566]

18.Auffinger P, Hashem Y. Nucleic acid solvation: from outside to insight. Curr Opin Struct Biol.2007; 17:325–333. [PubMed: 17574833]

19.Draper DE. RNA folding: thermodynamic and molecular descriptions of the roles of ions. Biophys J. 2008; 95:5489–5495. [PubMed: 18835912]

20.Pérez A, Marchan I, Svozil D, Sponer J, Cheatham TE III, Laughton CA, Orozco M. Refinement of the AMBER force field for nucleic acids: improving the description of alpha/gamma conformers. Biophys J. 2007; 92:3817–3829. [PubMed: 17351000]

21.Denning EJ, Priyakumar UD, Nilsson L, Mackerell AD. Impact of 2′-hydroxyl sampling on the conformational properties of RNA: Update of the CHARMM all-atom additive force field for RNA. J Comp Chem. 2011; 32:1929–1943. [PubMed: 21469161]

22.Ditzler MA, Otyepka M, Sponer J, Walter NG. Molecular dynamics and quantum mechanics of RNA: Conformational and chemical change we can believe in. Acc Chem Res. 2010; 43:40–47.[PubMed: 19754142]

23.Pérez A, Luque FJ, Orozco M. Frontiers in molecular dynamics simulations of DNA. Acc Chem Res. Article ASAP.

24.Bernauer J, Huang X, Sim AYL, Levitt M. Fully differentiable coarse-grained and all-atom

knowledge-based potentials for RNA structure evaluation. RNA. 2011; 17:1066–1075. [PubMed:21521828]

25.Das R, Baker D. Automated de novo prediction of native-like RNA tertiary structures. Proc Natl Acad Sci USA. 2007; 104:14664–14669. [PubMed: 17726102]

26.Das R, Karanicolas J, Baker D. Atomic accuracy in predicting and designing noncanonical RNA structure. Nat Meth. 2010; 7:291–294. (**) The authors show that physics-based potentials (with implicit solvent) are not as effective in discriminating native-like models when compared to a high-resolution knowledge-based potential. A double mutant sequence of a signal recognition

particle domain was predicted to stabilize the RNA relative to its native, and this result was verified experimentally.

27.Morozov AV, Fortney K, Gaykalova DA, Studitsky VM, Widom J, Siggia ED. Using DNA mechanics to predict in vitro nucleosome positions and formation energies. Nucl Acids Res. 2009;37:4707–4722. [PubMed: 19509309]

28.Frellsen J, Moltke I, Thiim M, Mardia KV, Ferkinghoff-Borg J, Hamelryck T, Gardner P. A probabilistic model of RNA conformational space. PLoS Comp Biol. 2009; 5:e1000406.

29.Taxilaga-Zetina O, Pliego-Pastrana P, Carbajal-Tinoco MD. Three-dimensional structures of RNA obtained by means of knowledge-based interaction potentials. Phys Rev E. 2010; 81:041914.

30.Das R, Kudaravalli M, Jonikas M, Laederach A, Fong R, Schwans JP, Baker D, Piccirilli JA,Altman RB, Herschlag D. Structural inference of native and partially folded RNA by highthroughput contact mapping. Proc Natl Acad Sci USA. 2008; 105:4144–4149. [PubMed:18322008]

31.Gherghe CM, Leonard CW, Ding F, Dokholyan NV, Weeks KM. Native-like RNA tertiary structures using a sequence-encoded cleavage agent and refinement by discrete molecular dynamics. J Am Chem Soc. 2009; 131:2541–2546. [PubMed: 19193004]

32.Yang SC, Parisien M, Major F, Roux B. RNA structure determination using SAXS data. J Phys Chem B. 2010; 114:10039–10048. [PubMed: 20684627]

33.Seetin MG, Mathews DH. Automated RNA tertiary structure prediction from secondary structure and low-resolution restraints. J Comput Chem. 2011; 32:2232–2244.

34.Ulmschneider JP, Jorgensen WL. Monte Carlo backbone sampling for polypeptides with variable bond angles and dihedral angles using concerted rotations and a Gaussian bias. J Chem Phys.2003; 118:4261–4271.

35.Minary P, Levitt M. Conformational optimization with natural degrees of freedom: a novel stochastic chain closure algorithm. J Comput Biol. 2010; 17:993–1010. (**) Stochastic chain closure can never fail unlike its analytical counterpart. This, together with rapid correction of spoiled local stereochemistry facilitates efficient use of natural moves in macromolecular modeling. [PubMed: 20726792]

36.Sim AYL, Levitt M, Minary P. Modeling and design by hierarchical natural moves. Proc Natl Acad Sci USA. in press. (**) A hierarchy of embedded move sets greatly improves Monte Carlo sampling efficiency, allowing previously intractable problems to be solved.

37.Methodologies for Optimization and SAmpling In Computational Studies (MOSAICS). on World Wide Web URL:http://csb.stanford.edu/~minary/MOSAICS.html

38.Parisien M, Major F. The MC-Fold and MC-Sym pipeline infers RNA structure from sequence data. Nature. 2008; 452:51–55. (**) First easily accessible online server for modeling RNA threedimensional structure from sequence alone. Secondary structure prediction (MC-Fold) precedes

tertiary structure assembly (MC-Sym). Both steps utilize information from nucleotide ‘cyclic motifs’ (a specific class of RNA fragments) derived from RNA structures in the PDB. [PubMed:18322526]

39.Brooks CL, Onuchic JN, Wales DJ. Taking a walk on a landscape. Science. 2001; 293:612–613.[PubMed: 11474087]

40.Swendsen RH, Wang JS. Nonuniversal critical dynamics in Monte-Carlo simulations. Phys RevLett. 1987; 58:86–88. [PubMed: 10034599]

41.Geyer, CJ. Computing Science and Statistics: The 23rd Symposium on the Interface. Interface Foundation; Fairfax: 1991. p. 156-163.

42.Kou SC, Zhou Q, Wong WH. Equi-energy sampler with applications in statistical inference and

statistical mechanics. Ann Statist. 2006; 34:1581–1619.

43.Curuksu J, Zacharias M. Enhanced conformational sampling of nucleic acids by a new

Hamiltonian replica exchange molecular dynamics approach. J Chem Phys. 2009; 130:104110.[PubMed: 19292526]

44.Tanner MA, Wing HW. The calculation of posterior distributions by data augmentation. J Am Statist Assoc. 1987; 82:528–540.

45.Minary P, Martyna GJ, Tuckerman ME. Algorithms and novel applications based on the isokinetic ensemble. I. Biophysical and path integral molecular dynamics. J Chem Phys. 2003; 118:2510–2526.

46.Minary P, Tuckerman ME, Martyna GJ. Long time molecular dynamics for enhanced conformational sampling in biomolecular systems. Phys Rev Lett. 2004; 93:150201. [PubMed:15524853]

47.Minary P, Tuckerman ME, Martyna GJ. Dynamical spatial warping: A novel method for the conformational sampling of biophysical structure. SIAM J Sci Comput. 2008; 30:2055–2083.

48.Li ZQ, Scheraga HA. Monte-Carlo-Minimization Approach to the Multiple-Minima Problem in Protein Folding. Proc Natl Acad Sci USA. 1987; 84:6611–6615. [PubMed: 3477791]

49.Rahman JA, Tully JC. Puddle-skimming: An efficient sampling of multidimensional configuration space. J Chem Phys. 2002; 116:8750–8760.

50.Case DA, Darden TA III TEC, Simmerling CL, Wang J, Duke RE, Luo R, Walker RC, Zhang W,Merz KM, et al. AMBER. 2010; 11 Edited by.

51.Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L,

Schulten K. Scalable molecular dynamics with NAMD. J Comput Chem. 2005; 26:1781–1802.[PubMed: 16222654]

52.Tan RKZ, Petrov AS, Harvey SC. YUP: A molecular simulation program for coarse-grained and

multiscaled models. J Chem Theory Comput. 2006; 2:529–540. [PubMed: 22844233]


2.阿达•约纳特:《RPS19基因突变在先天性纯红细胞再生障碍性贫血病中可能影响核糖体的功能和生物发生》

1.Ben-Shem A,Garreau de Loubresse N,Melnikov S,Jenner L, Yusupova G,Yusupov M.The structure of the eukaryotic ribosome at 3.0 a resolution. Science.2011;334:1524–9.

2.Khatter H,Myasnikov AG,Natchiar SK,Klaholz BP.Structure of the human 80S ribosome. Nature.2015;520:640–5.

3.Anger AM,Armache J-P,Berninghausen O,Habeck M, Subklewe M,Wilson DN, et al.Structures of thehuman and Drosophila 80S ribosome.Nature.2013;497:80–5.

4.Sharma S,Lafontaine DLJ.‘View from a bridge’:a new perspective on eukaryotic rRNA base modification. Trends Biochem Sci. 2015;40:560–75.

5.Babaian A,Rothe K,Girodat D,Minia I,Djondovic S,Milek M,et al.Loss of m1acp3Ψ ribosomal RNA modification is a major feature of cancer.Cell Rep.2020;31:107611.

6.Natchiar SK,Myasnikov AG,Kratzat H,Hazemann I,Klaholz BP. Visualization of chemical modifications in the human 80S ribosome structure.Nature.2017;551:472–7.

7.Li W,Ward FR,McClure KF,Chang ST-L,Montabana E,Liras S, et al.Structural basis for selective stalling of human ribosome nascent chain complexes by a drug-like molecule.Nat Struct Mol Biol.2019;26:501–9.

8.Bohnsack KE,Bohnsack MT.Uncovering the assembly pathway of human ribosomes and its emerging links to disease.EMBO J.2019;38:e100278.

9.Schilling V,Peifer C,Buchhaupt M,Lamberth S,Lioutikov A,Rietschel B,et al.Genetic interactions ofyeast NEP1 (EMG1),encoding an essential factor in ribosome biogenesis:genetic interactions of the essential ribosome biogenesis factor Nep1.Yeast. 2012;29:167–83.

10.Buchhaupt M,Meyer B,Kotter P,Entian K-D.€Genetic evidence for 18S rRNA binding and an Rps19p assembly function of yeast nucleolar protein Nep1p.Mol Genet Genomics.2006;276:273–84.

11.Angermayr M,Roidl A,Bandlow W.Yeast Rio1p is the founding member of a novel subfamily of protein serine kinases involved in the control of cell cycle

progression:novel class of protein kinases.Mol Microbiol.2002;44:309–24.

12.Widmann B,Wandrey F,Badertscher L,Wyler E,Pfannstiel J,Zemp I,et al.The kinase activity of human Rio1 is required for final steps of cytoplasmic maturation of 40S subunits.Mol Biol Cell.2012;23:22–35.

13.Bowen AM,Musalgaonkar S,Moomau CA,Gulay SP,Mirvis M,Dinman JD.Ribosomal protein uS19 mutants reveal its role in coordinating ribosome structure and function. Translation.2015;3:e1117703.

14.Ameismeier M,Cheng J,Berninghausen O,Beckmann R. Visualizing late states of human 40S ribosomal subunit maturation.Nature.2018;558:249–53.

15.Ameismeier M,Zemp I,van den Heuvel J,Thoms M, Berninghausen O,Kutay U,et al.Structural basis for the final steps of human 40S ribosome maturation.Nature. 2020;587:683–7.

16.Dez C,Houseley J,Tollervey D.Surveillance of nuclear-restricted pre-ribosomes within a subnucleolar region of Saccharomyces cerevisiae.EMBO J.2006;25:1534–46.

17.Ribbeck K.The permeability barrier of nuclear pore complexes appears to operate via hydrophobic exclusion. EMBO J.2002;21:2664–71.

18.Gorlich D,Seewald MJ, Ribbeck K.Characterization € of ran-driven cargo transport and the RanGTPase system by kinetic measurements and computer simulation.EMBO J.2003;22:1088–100.

19.Grandi P,Rybin V,Baßler J,Petfalski E,Strauß D,Marzioch M,et al.90S pre-ribosomes include the 35Spre-rRNA,the U3 snoRNP,and 40S subunit processing factors but predominantly lack 60S synthesis factors. Mol Cell. 2002;10:105–15.

20.Ho JH-N, Kallstrom G,Johnson AW.Nmd3p is a Crm1p-dependent adapter protein for nuclear export of the large ribosomal subunit.J Cell Biol.2000;151:1057–66.

21.Martın-Marcos P,Hinnebusch AG,Tamame M.Ribosomal protein L33 is required for ribosome biogenesis, subunit joining,and repression of GCN4 translation.Mol Cell Biol.2007;27:5968–85.

22.Robledo S,Idol RA,Crimmins DL, Ladenson JH,Mason PJ, Bessler M. The role of human ribosomal proteins in the maturation of rRNA and ribosome

production.RNA.2008;14:1918–29.

23.Jack K,Bellodi C,Landry DM,Niederer RO,Meskauskas A, Musalgaonkar S,et al.rRNA Pseudouridylation defects affect ribosomal ligand binding and translational Fidelity from yeast to human cells.Mol Cell.2011;44:660–6.

24.Schosserer M,Minois N,Angerer TB,Amring M,Dellago H,Harreither E,et al. Methylation of ribosomal RNA by NSUN5 is a conserved mechanism modulating organismal lifespan.Nat Commun.2015;6:6158.

25.Rakauskaite R,Dinman JD. An arc of unpaired “hinge bases” facilitates information exchange among functional centers of the ribosome.Mol Cell Biol.

2006;26:8992–9002.

26.Nakamoto T.The initiation of eukaryotic and prokaryotic protein synthesis:a selective accessibility and multisubstrate enzyme reaction.Gene.2007;403:1–5.

27.Passmore LA,Schmeing TM, Maag D,Applefield DJ,Acker MG,Algire MA,et al.The eukaryotic translation initiation factors eIF1 and eIF1A induce an

open conformation of the 40S ribosome.Mol Cell.2007;26:41–50.

28.Liang X,Liu Q,Fournier MJ.rRNA modifications in an Intersubunit bridge of the ribosome strongly affect both ribosome biogenesis and activity.Mol Cell. 2007;28:965–77.

29.Narla A,Ebert BL.Ribosomopathies:human disorders of ribosome dysfunction.Blood.2010;115:3196–205.

30.Mills EW,Green R.Ribosomopathies:there’s strength in numbers.Science.2017;358:eaan2755.

31.De Keersmaecker K,Sulima SO,Dinman JD.Ribosomopathies and the paradox of cellular hypo- to hyperproliferation.Blood.2015;125:1377–82.

32.Sardana R,Johnson AW.The methyltransferase adaptor protein Trm112 is involved in biogenesis of both ribosomal subunits.Mol Biol Cell.2012;23:4313–22.

33.Sardana R,White JP,Johnson AW.The rRNA methyltransferase Bud23 shows functional interaction with components of the SSU processome and RNase MRP. RNA.2013;19:828–40.

34.Bellemer C,Chabosseau P,Gallardo F,Gleizes P-E, Stahl G.Genetic interactions show the importance of rRNA modification machinery for the role of Rps15p during ribosome biogenesis in S.cerevisiæ.PLoS ONE.2010;5:e10472.

35.Yang L,Song T,Chen L,Kabra N,Zheng H,Koomen J,et al. Regulation of SirT1-Nucleomethylin binding by rRNA coordinates ribosome biogenesis with nutrient availability.Mol Cell Biol.2013;33:3835–48.

36.Thomas SR,Keller CA,Szyk A,Cannon JR,LaRonde-LeBlanc NA.Structural insight into the functional mechanism of Nep1/Emg1 N1-specific pseudouridine methyltransferase in ribosome biogenesis. Nucleic Acids Res. 2011;39:2445–57.

37.Meyer B,Wurm JP,Kotter P,Leisegang MS,€ Schilling V,Buchhaupt M,et al.The Bowen–Conradi syndrome protein Nep1 (Emg1) has a dual role in eukaryotic ribosome biogenesis,as an essential assembly factor and in the methylation ofΨ1191 in yeast 18S rRNA.Nucleic Acids Res.2011;39:1526–37.

38.Montellese C,Montel-Lehry N,Henras AK,Kutay U,Gleizes P-E,O’Donohue M-F.Poly(a)-specific ribonuclease is a nuclear ribosome biogenesis factor involved in human 18S rRNA maturation. NucleicAcids Res. 2017;45:6822–36.

39.Freed EF,Bleichert F,Dutca LM,Baserga SJ.When ribosomes go bad: diseases of ribosome biogenesis. Mol Biosyst.2010;6:481–93.

40.Danilova N,Sakamoto KM,Lin S.Ribosomal protein S19 deficiency in zebrafish leads to developmental abnormalities and defective erythropoiesis through activation of p53 protein family.Blood. 2008;112:5228–37.

41.Mason PJ,Perdigones N,Bessler M.Using induced human pluripotent stem cells to study Diamond–Blackfan anemia:an outlook on the clinical possibilities. Expert Rev Hematol.2013;6:627–9.

42.Garc on L,Ge J,Manjunath SH,Mills JA,Apicella M, Parikh S,et al.Ribosomal and hematopoietic defects in induced pluripotent stem cells derived from Diamond Blackfan anemia patients.Blood.2013;122:912–21.

43.Babaylova ES,Gopanenko AV,Bulygin KN,Tupikin AE, Kabilov MR,Malygin AA, et al.mRNA regions where 80S ribosomes pause during translation elongation in vivo interact with protein uS19,a component of the decoding site.Nucleic Acids Res.2020;48:912–23.

44.Keel SB,Doty RT,Yang Z,Quigley JG,Chen J,Knoblaugh S, et al.A heme export protein is required for red blood cell differentiation and iron homeostasis.Science.2008;319:825–8.

45.Gazda HT,Sheen MR,Vlachos A,Choesmel V,O’Donohue M-F,Schneider H,et al.Ribosomal protein L5 and L11 mutations are associated with cleft palate and abnormal thumbs in Diamond-Blackfan anemia patients. Am J Hum Genet.2008;83:769–80.

46.Boria I,Quarello P,Avondo F,Garelli E,Aspesi A,Carando A,et al.A new database for ribosomal protein genes which are mutated in Diamond-Blackfan

anemia.Hum Mutat.2008;29:E263–70.

47.Engidaye G,Melku M,Enawgaw B.Diamond Blackfan anemia: genetics, pathogenesis, diagnosis andtreatment. EJIFCC. 2019;30:67–81.

48.De Keersmaecker K,Atak ZK,Li N,Vicente C,Patchett S, Girardi T,et al.Exome sequencing identifies mutation in CNOT3 and ribosomal genes RPL5 and RPL10 in T-cell acute lymphoblastic leukemia.Nat Genet.2013;45:186–90.

49.Girardi T,De Keersmaecker K. T-ALL: ALL a matter of translation?Haematologica.2015;100:293–5.

50.Van Vlierberghe P,Ferrando A.The molecular basis of T cell acute lymphoblastic leukemia.J Clin Invest. 2012;122:3398–406.

51.Chiaretti S,Foa R.T-cell acute lymphoblasticleukemia. Haematologica.2009;94:160–2.

52.Thiadens KAMH,de Klerk E,Fokkema IFAC,t Hoen PAC, von Lindern M.Ribosome profiling uncovers the role of uORFs in translational control of gene expression during erythroblast differentiation.Blood. 2014;124:2658–8.

53.Josephs HW.Anaemia of infancy and early childhood.Medicine (Baltimore).1936;15:307–451.

54.Diamond LK,Blackfan KD.Hypoplastic anemia.Am J Dis Child. 1938;56:464–7.

55.Diamond LK,Allen DM,Magill FB.Congenital(erythroid) hypoplastic anemia:a 25-year study.Am JDis Child. 1961;102:403–15.

56.Diamond LK.Congenital hypoplastic anemia:Diamond-Blackfan syndrome.Historical and clinical aspects. Blood Cells.1978;4:209–13.

57.Da Costa L,Moniz H,Simansour M,Tchernia G,Mohandas N, Leblanc T.Diamond-Blackfan anemia,ribosome and erythropoiesis.Transfus Clin Biol.2010;17:112–9.

58.Ellis SR,Massey AT.Diamond Blackfan anemia:a paradigm for a ribosome-based disease.Med Hypotheses.2006;66:643–8.

59.Boria I,Garelli E,Gazda HT, Aspesi A,Quarello P,Pavesi E,et al.The ribosomal basis of diamondblackfan anemia:mutation and database update.Hum Mutat.2010;31:1269–79.

60.Chakraborty A,Uechi T,Nakajima Y,Gazda HT, O’Donohue M-F,Gleizes P-E,et al.Cross talk between TP53 and c-Myc in the pathophysiology of Diamond-Blackfan anemia:evidence from RPL11-deficient in vivo and in vitro models.Biochem Biophys Res Commun.2018;495:1839–45.

61.Gazda HT,Preti M,Sheen MR,O’Donohue M-F,Vlachos A, Davies SM,et al.Frameshift mutation in p53 regulator RPL26 is associated with multiple physical abnormalities and a specific pre-ribosomal RNA processing defect in diamond-blackfan anemia.Hum Mutat. 2012;33:1037–44.

62.McGowan KA, Li JZ,Park CY,Beaudry V,Tabor HK, Sabnis AJ, et al.Ribosomal mutations cause p53- mediated dark skin and pleiotropic effects.Nat Genet.2008;40:963–70.

63.Sultana S,Ferdous S,Hossain N,Shah M,Das M,Ferdous A. Diamond Blackfan anemia a rare anemia of infancy. Bangladesh J child Health.2007;31:40–2.

64.Nathan DG,Oski FA.Hematology of infancy and childhood.3rd ed. Philadelphia,PA: W.B. Saunders Co.; 1987.

65.Mugishima H,Gale RP,Rowlings PA,Horowitz MM,Marmont AM, McCann SR,et al.Bone marrow transplantation for Diamond-Blackfan anemia.Bone Marrow Transplant. 1995;15:55–8.

66.Roy V,Perez WS,Eapen M, Marsh JCW,Pasquini M, Pasquini R,et al.Bone marrow transplantation for Diamond-Blackfan anemia.Biol Blood Marrow Transplant. 2005;11:600–8.

67.Vlachos A,Federman N,Reyes-Haley C,Abramson J,Lipton J.Hematopoietic stem cell transplantation for Diamond Blackfan anemia:a report from the Diamond Blackfan anemia registry.Bone Marrow Transplant.2001;27:381–6.

68.Da Costa L,Tchernia G,Gascard P,Lo A,Meerpohl J,Niemeyer C,et al.Nucleolar localization of RPS19 protein in normal cells and mislocalization due to

mutations in the nucleolar localization signals in 2 Diamond-Blackfan anemia patients:potential insights into pathophysiology.Blood.2003;101:5039–45.

69.Gazda HT,Grabowska A,Merida-Long LB,Latawiec E,Schneider HE,Lipton JM, et al.Ribosomal protein S24 gene is mutated in Diamond-Blackfan anemia.Am J Hum Genet.2006;79:1110–8.

70.Gripp KW,Curry C,Olney AH,Sandoval C,Fisher J, Chong JX-L, et al.Diamond-Blackfan anemia with mandibulofacial dystostosis is heterogeneous,including the novel DBA genes TSR2 and RPS28. Am J Med Genet A.2014;164:2240–9.

71.Farrar JE,Vlachos A,Atsidaftos E,Carlson-Donohoe H, Markello TC,Arceci RJ,et al.Ribosomal protein gene deletions in Diamond-Blackfan anemia.Blood.

2011;118:6943–51.

72.Lipton JM,Ellis SR.Diamond-Blackfan anemia: diagnosis,treatment,and molecular pathogenesis.Hematol Oncol Clin North Am.2009;23:261–82.

73.Ito E,Konno Y,Toki T,Terui K. Molecular pathogenesis in Diamond–Blackfan anemia. Int J Hematol. 2010;92:413–8.

74.Sakamoto KM,Narla A.Perspective on Diamond–Blackfan anemia:lessons from a rare congenital bone marrow failure syndrome.Leukemia.2018;32:249–51.

75.Wlodarski MW, Da Costa L,O’Donohue M-F,Gastou M, Karboul N,Montel-Lehry N,et al.Recurring mutations in RPL15 are linked to hydrops fetalis and treatment independence in DiamondBlackfan anemia.Haematologica. 2018;103:949–58.

76.Mirabello L,Khincha PP,Ellis SR,Giri N,Brodie S,Chandrasekharappa SC,et al.Novel and known ribosomal causes of Diamond-Blackfan anaemia identified through comprehensive genomic characterisation.J Med Genet. 2017;54:417–25.

77.Ikeda F,Yoshida K,Toki T,Uechi T,Ishida S,Nakajima Y, et al. Exome sequencing identified RPS15A as a novel causative gene for DiamondBlackfan anemia. Haematologica.2017;102:e93–6.

78.Sankaran VG,Ghazvinian R,Do R,Thiru P,Vergilio J-A, Beggs AH,et al.Exome sequencing identifies GATA1 mutations resulting in Diamond-Blackfan anemia.J Clin Invest.2012;122:2439–43.

79.Miyake K,Utsugisawa T,Flygare J,Kiefer T,Hamaguchi I, Richter J,et al.Ribosomal protein S19 deficiency leads to reduced proliferation and increased apoptosis but does not affect terminal erythroid differentiation in a cell line model of Diamond-Blackfan anemia.Stem Cells.2008;26:323–9.

80.Cmejla R,Cmejlova J,Handrkova H,Petrak J,Petrtylova K,Mihal V,et al.Identification of mutations in the ribosomal protein L5 (RPL5) and ribosomal protein L11 (RPL11) genes in Czech patients with Diamond-Blackfan anemia.HumMutat.2009;30:321–7.

81.Farrar JE,Nater M,Caywood E,McDevitt MA,Kowalski J, Takemoto CM,et al.Abnormalities of the large ribosomal subunit protein,Rpl35a, in DiamondBlackfan anemia. Blood.2008;112:1582–92.

82.Campagnoli MF,Ramenghi U,Armiraglio M,Quarello P, Garelli E,Carando A, et al. RPS19 mutations in patients with Diamond-Blackfan anemia.Hum Mutat.2008;29:911–20.

83.Draptchinskaia N,Gustavsson P,Andersson B,Pettersson M, Willig T-N,Dianzani I,et al.The gene encoding ribosomal protein S19 is mutated in Diamond-Blackfan anaemia. Nat Genet.1999;21:169–75.

84.Willig TN,Draptchinskaia N,Dianzani I,Ball S,Niemeyer C,Ramenghi U,et al.Mutations in ribosomal protein S19 gene and diamond blackfan anemia:wide variations in phenotypic expression. Blood. 1999;94:4294–306.

85.Caterino M,Aspesi A, Pavesi E,Imperlini E, Pagnozzi D,Ingenito L,et al.Analysis of the interactome of ribosomal protein S19 mutants.Proteomics. 2014;14:2286–96.

86.Kampen KR,Sulima SO,Vereecke S,De Keersmaecker K.Hallmarks of ribosomopathies.Nucleic Acids Res. 2020;48:1013–28.

87.Uechi T,Nakajima Y,Chakraborty A,Torihara H, Higa S, Kenmochi N.Deficiency of ribosomal protein S19 during early embryogenesis leads to reduction of

erythrocytes in a zebrafish model of DiamondBlackfan anemia.Hum Mol Genet.2008;17:3204–11.

88.Ulirsch JC,Verboon JM,Kazerounian S,Guo MH, Yuan D, Ludwig LS,et al.The genetic landscape of Diamond-Blackfan anemia.Am J Hum Genet.2018;103:930–47.

89.Campagnoli MF,Garelli E,Quarello P,Carando A,Varotto S,Nobili B,et al.Molecular basis of Diamond-Blackfan anemia:new findings from the Italian registry and a review of the literature. Haematologica.2004;89:480–9.

90.Orfali KA,Ohene-Abuakwa Y,Ball SE.Diamond Blackfan anaemia in the UK:clinical and genetic heterogeneity: DBA genetic study.Br J Haematol.2004;125:243–52.

91.Tsangaris E,Klaassen R,Fernandez CV,Yanofsky R,Shereck E,Champagne J, et al.Genetic analysis of inherited bone marrow failure syndromes from one prospective, comprehensive and population-based cohort and identification of novel mutations. J Med Genet. 2011;48:618–28.

92.Wan Y,Chen X,An W,Ruan M,Zhang J,Chang L,et al. Clinical features,mutations and treatment of 104 patients of Diamond-Blackfan anemia in China:a

single-center retrospective study.Int J Hematol.2016;104:430–9.

93.Smetanina NS,Mersiyanova IV,Kurnikova MA,Ovsyannikova GS,Hachatryan LA,Bobrynina VO,et al. Clinical and genomic heterogeneity of Diamond Blackfan anemia in The Russian Federation:DiamondBlackfan anemia in The Russian Federation.Pediatr Blood Cancer.2015;62:1597–600.

94.Ichimura T,Yoshida K,Okuno Y,Yujiri T,Nagai K,Nishi M, et al.Diagnostic challenge of Diamond–Blackfan anemia in mothers and children by wholeexome sequencing. Int J Hematol.2017;105:515–20.

95.Choesmel V,Bacqueville D,Rouquette J,NoaillacDepeyre J,Fribourg S,Cretien A,et al.Impaired ribosome biogenesis in Diamond-Blackfan anemia.Blood. 2007;109:1275–83.

96.Flygare J,Aspesi A,Bailey JC,Miyake K,Caffrey JM, Karlsson S,et al.Human RPS19, the gene mutated in Diamond-Blackfan anemia,encodes a ribosomal protein required for the maturation of 40S ribosomal subunits. Blood. 2007;109:980–6.

97.Devlin EE,DaCosta L,Mohandas N,Elliott G,Bodine DM. A transgenic mouse model demonstrates a dominant negative effect of a point mutation in the RPS19 gene associated with Diamond-Blackfan anemia.Blood. 2010;116:2826–35.

98.Schuster J,Frojmark A-S,Nilsson P,Badhai J,€ Virtanen A,Dahl N.Ribosomal protein S19 binds to its own mRNA with reduced affinity in DiamondBlackfan anemia.Blood Cells Mol Dis.2010;45:23–8.

99.Badhai J,Frojmark A-S,Razzaghian HR,Davey E,€ Schuster J,Dahl N.Posttranscriptional downregulation of small ribosomal subunit proteins correlates with reduction of 18S rRNA in RPS19 deficiency.FEBS Lett. 2009;583:2049–53.

100.Ivanov AV,Malygin AA,Karpova GG.Human ribosomal protein S26 suppresses the splicing of its pre-mRNA. Biochim Biophys Acta.2005;1727:134–40.

101.Malygin AA,Parakhnevitch NM, Ivanov AV,Eperon IC, Karpova GG.Human ribosomal protein S13 regulates expression of its own gene at the splicing step by a feedback mechanism.Nucleic Acids Res. 2007;35:6414–23.

102.Macıas S,Bragulat M,Tardiff DF,Vilardell J.L30 binds the nascent RPL30 transcript to repress U2 snRNP recruitment.Mol Cell.2008;30:732–42.

103.Moore KS,von Lindern M.RNA binding proteins and regulation of mRNA translation in erythropoiesis. Front Physiol.2018;9:910.

104.Gregory LA,Aguissa-Toure A-H,Pinaud N,Legrand P, Gleizes P-E,Fribourg S.Molecular basis of Diamond Blackfan anemia:structure and function analysis of RPS19.Nucleic Acids Res.2007;35:5913–21.

105.Ellis SR,Gleizes P-E.Diamond Blackfan anemia:ribosomal proteins going rogue.Semin Hematol.2011;48:89–96.

106.Leger-Silvestre I,Caffrey JM,Dawaliby R,AlvarezArias DA,Gas N, Bertolone SJ,et al.Specific role for yeast homologs of the Diamond Blackfan anemiaassociated Rps19 protein in ribosome synthesis. J BiolChem.2005;280:38177–85.

107.Idol RA,Robledo S,Du H-Y,Crimmins DL,Wilson DB, Ladenson JH,et al.Cells depleted for RPS19,a protein associated with Diamond Blackfan anemia,show defects in 18S ribosomal RNA synthesis and small ribosomal subunit production.Blood Cells Mol Dis.2007;39:35–43.

108.Juli G,Gismondi A,Monteleone V,Caldarola S,Iadevaia V,Aspesi A,et al.Depletion of ribosomal protein S19 causes a reduction of rRNA synthesis. Sci Rep.2016;6:35026.

109.Angelini M,Cannata S,Mercaldo V,Gibello L,Santoro C, Dianzani I,et al.Missense mutations associated with Diamond–Blackfan anemia affect the assembly of ribosomal protein S19 into the ribosome.Hum Mol Genet.2007;16:1720–7.

110.Cretien A,Hurtaud C,Moniz H,Proust A,Marie I,Wagner-Ballon O,et al.Study of the effects of proteasome inhibitors on ribosomal protein S19 (RPS19) mutants,identified in patients with DiamondBlackfan anemia. Haematologica.2008;93:1627–34.

111.Hsu M-K,Lin H-Y,Chen F-C.NMD classifier:a reliable and systematic classification tool for nonsense-mediated decay events.PLoS ONE.2017;12:e0174798.

112.Goddard TD, Huang CC,Meng EC, Pettersen EF,Couch GS, Morris JH,et al.UCSF ChimeraX:meeting modern challenges in visualization and analysis. Protein Sci.2018;27:14–25.

113.Pettersen EF,Goddard TD,Huang CC,Meng EC,Couch GS, Croll TI,et al.UCSF ChimeraX:structure visualization for researchers,educators,and developers.Protein Sci. 2021;30:70–82.

114.Emsley P,Lohkamp B,Scott WG,Cowtan K.Features and development of Coot.Acta Crystallogr D Biol Crystallogr. 2010;66:486–501.

115.Pettersen EF,Goddard TD,Huang CC,Couch GS,Greenblatt DM,Meng EC,et al.UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem.2004;25:1605–12.

116.Pruitt KD,Brown GR,Hiatt SM,Thibaud-Nissen F,Astashyn A,Ermolaeva O,et al.RefSeq:an update on mammalian reference sequences.Nucleic Acids Res.2014;42:D756–63.

117.Navarro Gonzalez J,Zweig AS,Speir ML, Schmelter D, Rosenbloom KR, Raney BJ, et al.The UCSC genome browser database:2021 update.Nucleic Acids Res. 2021;49:D1046–57.

118.Duvaud S,Gabella C,Lisacek F,Stockinger H,Ioannidis V, Durinx C. Expasy, the Swiss bioinformatics resource portal, as designed by its users. Nucleic Acids Res. 2021;49:W216–27.

119.Coban-Akdemir Z,White JJ,Song X,Jhangiani SN,Fatih JM,Gambin T,et al.Identifying genes whose mutant transcripts cause dominant disease traits by potential gain-of-function alleles. Am J Hum Genet.2018;103:171–87.

120.Madeira F,Park YM,Lee J,Buso N,Gur T,Madhusoodanan N,et al.The EMBL-EBI search and sequence analysis tools APIs in 2019.Nucleic Acids Res.2019;47:W636–41.

121.Larkin MA,Blackshields G,Brown NP,Chenna R,McGettigan PA,McWilliam H,et al.Clustal W and Clustal X version 2.0.Bioinformatics.2007;23:2947–8.

122.Waterhouse AM,Procter JB,Martin DMA,Clamp M, Barton GJ.Jalview version 2—a multiple sequence alignment editor and analysis workbench.Bioinformatics. 2009;25:1189–91.

123.Waterhouse A,Bertoni M,Bienert S,Studer G,Tauriello G,Gumienny R,et al.SWISS-MODEL:homology modelling of protein structures and complexes.Nucleic Acids Res. 2018;46:W296–303.

124.Bienert S,Waterhouse A,de Beer TAP,Tauriello G,Studer G,Bordoli L,et al.The SWISS-MODEL repository—new features and functionality.Nucleic Acids Res.2017;45:D313–9.

125.Guex N,Peitsch MC,Schwede T.Automated comparative protein structure modeling with SWISSMODEL and Swiss-PdbViewer:a historical perspective.Electrophoresis. 2009;30:S162–73.

126.Studer G,Rempfer C,Waterhouse AM,Gumienny R,Haas J, Schwede T.QMEANDisCo—distance constraints applied on model quality estimation.Bioinformatics.2020;36:1765–71.

127.Bertoni M,Kiefer F,Biasini M,Bordoli L,Schwede T. Modeling protein quaternary structure of homoand hetero-oligomers beyond binary interactions by

homology. Sci Rep. 2017;7:10480.

128.Cerezo E,Plisson-Chastang C,Henras AK,Lebaron S, Gleizes P,O’Donohue M,et al.Maturation of pre-40S particles in yeast and humans.Wiley Interdiscip Rev RNA. 2019;10:e1516.

129.Da Costa L,Willig T-N,Fixler J,Mohandas N,Tchernia G.Diamond-Blackfan anemia.Curr Opin Pediatr.2001;13:10–5.

130.Zhang Z.Identification and analysis of over 2000 ribosomal protein pseudogenes in the human genome.Genome Res.2002;12:1466–82.

131.Balasubramanian S,Zheng D,Liu Y-J,Fang G,Frankish A, Carriero N,et al.Comparative analysis of processed ribosomal protein pseudogenes in four mammalian genomes. Genome Biol.2009;10:R2.

132.Cmejla R,Blafkova J,Stopka T,Zavadil J,Pospisilova D,Mihal V,et al.Ribosomal protein S19 gene mutations in patients with DiamondBlackfan anemia and identification of ribosomal protein S19 pseudogenes.Blood Cells Mol Dis.2000;26:124–32.

133.Hopes T,Norris K,Agapiou M,McCarthy CGP,Lewis PA, O’Connell MJ,et al.Ribosome heterogeneity in Drosophila melanogaster gonads through paralog-switching. Nucleic Acids Res.2021;50:2240–57.

134.Matzov D,Taoka M,Nobe Y,Yamauchi Y,Halfon Y,Asis N, et al.Cryo-EM structure of the highly atypical cytoplasmic ribosome of Euglena gracilis. Nucleic Acids Res.2020;48:11750–61.

135.Sas-Chen A,Thomas JM,Matzov D, Taoka M,Nance KD, Nir R, et al.Dynamic RNA acetylation revealed by quantitative cross-evolutionary mapping. Nature.2020;583:638–43.

136.Chen X,Wan L,Wang W,Xi W-J,Yang A-G,Wang T. e-recognition of pseudogenes: from molecular to clinical applications. Theranostics.2020;10:1479–99.

137.Pink RC,Wicks K,Caley DP,Punch EK,Jacobs L, Francisco Carter DR.Pseudogenes:pseudo-functional or key regulators in health and disease?RNA.

2011;17:792–8.

138.Gasi Tandefelt D,Boormans J,Hermans K,TrapmanJ. ETS fusion genes in prostate cancer.Endocr Relat Cancer. 2014;21:R143–52.

139.Mei D,Song H,Wang K,Lou Y,Sun W,Liu Z,et al.Up-regulation of SUMO1 pseudogene 3(SUMO1P3) in gastric cancer and its clinical association.Med Oncol. 2013;30:709.

140.Tay Y,Kats L,Salmena L,Weiss D,Tan SM,Ala U,et al. Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs.

Cell.2011;147:344–57.

141.Poliseno L,Salmena L,Zhang J,Carver B,Haveman WJ, Pandolfi PP.A coding-independent function of gene and pseudogene mRNAs regulates tumour biology.Nature. 2010;465:1033–8.

142.Koda Y,Soejima M,Wang B,Kimura H.Structure and expression of the gene encoding secretor-type Galactoside 2-alpha-l-fucosyltransferase (FUT2).Eur J

Biochem.1997;246:750–5.

143.Lui KY,Peng H,Lin J,Qiu C,Chen H,Fu R,et al.Pseudogene integrator complex subunit 6 pseudogene 1 (INTS6P1) as a novel plasma-based biomarker for

hepatocellular carcinoma screening.Tumor Biol.2016;37:1253–60.

144.Kalyana-Sundaram S,Shankar S,DeRoo S,Iyer MK,Palanisamy N,Chinnaiyan AM,et al.Gene fusions associated with recurrent amplicons represent a class of passenger aberrations in breast cancer.Neoplasia.2012;14:702–8.

145.Dianzani I,Loreni F.Diamond-Blackfan anemia:a ribosomal puzzle.Haematologica. 2008;93:1601–4.


3.阿达•约纳特:《核糖体晶体学:一种灵活的核苷酸锚定tRNA易位,促进肽键形成、手性鉴别和抗生素协同作用》

1.Schluenzen,F.,Tocilj,A.,Zarivach,R.,Harms,J.,Gluehmann,M.,Janell,D.,Bashan,A.,Bartels,H.,Agmon,I.,Franceschi, F.and Yonath,A.(2000)Cell 102,615–623.

2.Wimberly,B.T.,Brodersen,D.E.,ClemonsJr.,W.M.,MorganWarren,R.J.,Carter,A.P.,Vonrhein,C.,Hartsch,T.and Ramakrishnan,V.(2000)Nature 407,327–339.

3.Yusupov,M.M.,Yusupova,G.Z.,Baucom,A.,Lieberman,K.,Earnest,T.N.,Cate,J.H.and Noller,H.F.(2001)Science 292,

883–896.

4.Harms,J.,Schluenzen,F.,Zarivach,R.,Bashan,A.,Gat,S.,

Agmon,I.,Bartels,H.,Franceschi,F.and Yonath,A.(2001) Cell 107,679–688.

5.Ban,N.,Nissen,P.,Hansen,J.,Moore,P.B.and Steitz,T.A.

(2000)Science 289,905–920.

6.Nissen,P.,Hansen,J.,Ban,N.,Moore,P.B.and Steitz,T.A.

(2000)Science 289,920–930.

7.Schluenzen,F.,Zarivach,R.,Harms,J.,Bashan,A.,Tocilj, A.,Albrecht,R.,Yonath,A.and Franceschi,F.(2001)Nature 413,814–821.

8.Schmeing,T.M.,Seila,A.C.,Hansen,J.L.,Freeborn,B.,Soukup,J.K.,Scaringe,S.A.,Strobel,S.A.,Moore,P.B.and Steitz, T.A.(2002) Nat.Struct.Biol.9,225–230.

9.Hansen,J.L.,Ippolito,J.A.,Ban,N.,Nissen,P.,Moore,P.B. andnSteitz, T.A.(2002) Mol.Cell 10,117–128.

10.Hansen,J.L.,Schmeing,T.M.,Moore,P.B.and Steitz,T.A.

(2002)Proc.Natl.Acad.Sci.USA 99,11670–11675.

11.Bashan,A.,Agmon,I.,Zarivach,R.,Schluenzen,F.,Harms, J.,Berisio,R.,Bartels,H.,Franceschi,F.,Auerbach,T.,Hansen,H.A.S.,Kossoy,E.Kessler,M.and Yonath,A.(2003) Mol. Cell.11,91–102.

12.Berisio,R.,Schluenzen,F.,Harms,J.,Bashan,A.,Auerbach, T.,Baram,D.and Yonath,A.(2003) Nat.Struct.Biol.10, 366–370.

13.Berisio,R.,Harms,J.,Schluenzen,F.,Zarivach,R.,Hansen,H.A.S.,Fucini,P.and Yonath,A.(2003)J.Bacteriol.185, 4276–4279.

14.Schluenzen,F.,Harms,J.M.,Franceschi,F.,Hansen,H.A.,

Bartels,H.,Zarivach,R.and Yonath,A.(2003) Structure 11, 329–338.

15.Harms,J.M,Schluenzen,F.,Fucini,Bartels,H.and Yonath, A.(2004)BMC Biol.(in press).

16.Bashan,A.,Zarivach,R.,Schluenzen,F.,Agmon,I.,Harms,J.,Auerbach,T.,Baram,D.,Berisio,R.,Bartels,H.,Hansen,H.A.,Fucini,P.,Wilson,D.,Peretz,M.,Kessler,M.and Yonath,A.(2003)Biopolymers70,19–41.

17.Agmon,I.,Auerbach,T.,Baram,D.,Bartels,H.,Bashan,A.,

Berisio,R.,Fucini,P.,Hansen,H.A.,Harms,J.,Kessler,M.,Peretz,M.,Schluenzen,F.,Yonath,A.and Zarivach,R.(2003)Eur. J.Biochem.270,2543–2556.

18.Agmon,I.,Bashan,A.,Zarivach,R.,Yonath,A.(2004)submitted.

19.Moore,P.B.and Steitz,T.A.(2003)RNA 9,155–159.

20.Yonath,A.(2003)Biol.Chem.384,1411–1419.

21.Yonath,A.(2003)Chem.Biol.Chem.4,1008–1017.

22.Samaha,R.R.,Green, R.and Noller,H.F.(1995) Nature 377,

309–314.

23.Fujiwara,S.,Lee,S.G.,Haruki,M.,Kanaya,S.,Takagi,M.and Imanaka,T.(1996)FEBS Lett.394,66–70.

24.Uhlein,M.,Weglohner,W.,Urlaub,H.and Wittmann-Liebold,B.(1998) Biochem.J.331,423–430.

25.Nitta,I.,Kamada,Y.,Noda,H.,Ueda,T.and Watanabe,K.

(1998)Science 281,666–669.

26.Kim,D.F.and Green,R.(1999)Mol.Cell.4,859–864.

27.Miskin,R.,Zamir,A.and Elson,D.(1968)Biochem.Biophys.

Res.Commun.33,551–557.

28.Vogel,Z.,Vogel,T.,Zamir,A.and Elson,D.(1971)J.Mol. Biol.60,339–346.

29.Zamir,A.,Miskin,R.,Vogel,Z.and Elson,D.(1974) Methods

Enzymol.30,406–426.

30.Bayfield,M.A.,Dahlberg,A.E.,Schulmeister,U.,Dorner, S.and Barta,A.(2001)Proc.Natl.Acad.Sci.USA98, 10096–10101.

31.Yonath,A.(2002) Annu.Rev.Biophys.Biomol.Struct.31, 257–273.

32.Zarivach,R.,Bashan,A.,Berisio,R.,Harms,J.,Auerbach, T.,Schluenzen,F.,Bartels,H.,Baram,D.,Pyetan,E.,Sittner, A.Amit, M.,Hansen,H.A.S.,Kessler,M.,Liebe,C.,Wolff,A.,

Agmon,I.and Yonath,A.(2004)J.Phys.Org.Chem.(in press).

33.Dedkova,L.M.,Fahmi,N.E.,Golovine,S.Y.and Hecht,S.M.

(2003)J.Am.Chem.Soc.125,6616–6617.

34.Green, R.,Samaha,R.R.and Noller,H.F.(1997)J.Mol. Biol.266, 40–50.

35.Wower,J.,Kirillov,S.V.,Wower,I.K.,Guven,S.,Hixson,S.S.and Zimmermann,R.A.(2000)J.Biol.Chem.275, 37887–37894.

36.Bocchetta,M.,Xiong,L.and Mankin,A.S.(1998)Proc. Natl.

Acad.Sci.USA 95,3525–3530.

37.Porse,B.T.,Thi-Ngoc,H.P.and Garrett,R.A.(1996)J.Mol. Biol.264,472–483.

38.Moazed,D.and Noller,H.F.(1991)Proc.Natl.Acad.Sci.USA

88,3725–3728.

39.Auerbach,T.,Bashan,A.,Harms,J.,Schluenzen,F.,Zarivach,R.,Bartels,H.,Agmon,I.,Kessler,M.,Pioletti,M.,Franceschi,F.and Yonath,A.(2002)Curr.Drug Targets – Infect. Disord.2,169–186.

40.Cocito,C.,Di Giambattista,M.,Nyssen,E.and Vannuffel, P.(1997 J.Antimicrob.Chemother.39,7–13.

41.Allignet,J.,Aubert,S.,Morvan,A.and el Solh,N.(1996)

Antimicrob.Agents Chemother.40,2523–2528.

42.Malbruny,B.,Canu,A.,Bozdogan,B.,Fantin,B.,Zarrouk, V.,Dutka-Malen,S.,Feger,C.and Leclercq,R.(2002) Antimicrob.Agents Chemother.46,2200–2207.

43.Nyssen,E.,Di Giambattista,M.and Cocito,C.(1989) Biochim.Biophys.Acta 1009,39–46.

44.Parfait,R.and Cocito,C.(1980)Proc.Natl.Acad.Sci.USA 77,5492–5496.

45.Nakashio,S.,Iwasawa,H.,Iino,S.and Shimada,J.(1997) Jpn.J.Antibiot.50,844–853.

46.Parfait,R.,Di Giambattista,M.and Cocito,C.(1981) Biochim.Biophys.Acta 654,236–241.

47.Pereyre,S.,Gonzalez,P.,De Barbeyrac B.,Darnige,A.,

Renaudin,H.,Charron,A.,Raherison,S.,Bebear,C.and Bebear, C.M.(2002)Antimicrob.Agents Chemother.46,3142–3150.

48.Chinali,G.,Moureau,P.and Cocito,C.G.(1984)J.Biol. Chem.259, 9563–9568.

49. Porse,B.T.and Garrett,R.A.(1999)J.Mol.Biol.286, 375–387.

50.Rodriguez-Fonseca,C.,Amils,R.and Garrett,R.A.(1995) J. Mol.Biol.247,224–235.

51.Hansen,J.L.,Moore,P.B.and Steitz,T.A.(2003)J.Mol. Biol.330,1061–1075.

52.Porse,B.T.,Kirillov,S.V.,Awayez,M.J.and Garrett,R.A. (1999)RNA 5,585–595.

53.Bright,G.M.,Nagel,A.A.,Bordner,J.,Desai,K.A.,Dibrino, J.N.,Nowakowska,J.,Vincent,L.,Watrous,R.M.,Sciavolino,

F.C.and English,A.R.,et al.(1988)J.Antibiot.41, 1029–1047.

54.Wittmann,H.G.,Stofflfflffler,G.,Apirion,D.,Rosen,L., Tanaka,K.,Tamaki, M.,Takata,R.,Dekio,S.and Otaka,E.. (1973) Mol.Gen.Genet.127,175–189.


4.阿龙·切哈诺沃:《体内和体外泛素蛋白水解系统对原癌基因产物C-fos的降解:结合酶的鉴定和表征》

1. Angel, P., and M. Karin. 1991. The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochim. Biophys. Acta 1072:129– 157.

2. Blumenfeld, N., H. Gonen, A. Mayer, C. E. Smith, N. R. Siegel, A. L. Schwartz, and A. Ciechanover. 1994. Purification and characterization of a novel species of ubiquitin-carrier protein, E2, that is involved in the degradation of a non-‘‘N-end rule’’ proteins. J. Biol. Chem. 269:9574–9581.

3. Bradford, M. M. 1976. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254.

4. Brown, K., S. Gerstberger, L. Carlson, G. Franzoso, and U. Siebenlist. 1995. Control of IkB-a proteolysis by site-specific, signal-induced phosphorylation. Science 267:1485–1488.

5. Carillo, S., M. Pariat, A.-M. Steff, P. Roux, M. Etienne-Julan, T. Lorca, and M. Piechaczyk. 1994. Differential sensitivity of FOS and JUN family members to calpains. Oncogene 9:1679–1689.

6. Chowdary, D. R., J. J. Dermody, K. K. Jha, and H. L. Ozer. 1994. Accumulation of p53 in a mutant cell line defective in the ubiquitin pathway. Mol. Cell. Biol. 14:1997–2003.

7. Ciechanover, A. 1994. The ubiquitin-proteasome proteolytic pathway. Cell 79:13–21.

8. Ciechanover, A., J. A. DiGiuseppe, B. Bercovich, A. Orian, J. D. Richter, A. L. Schwartz, and G. M. Brodeur. 1991. Degradation of nuclear oncoproteins by the ubiquitin system in vitro. Proc. Natl. Acad. Sci. USA 88:139–143.

9. Ciechanover, A., D. Shkedy, M. Oren, and B. Bercovich. 1994. Degradation of the tumor suppressor protein p53 by the ubiquitin-mediated proteolytic system requires a novel species of ubiquitin-carrier protein, E2. J. Biol. Chem. 269:9582–9589.

10. Curran, T. 1988. The fos oncogene, p. 307–325. In E. P. Reddy, A. M. Skalka, and T. Curran (ed.), The oncogene book. Elsevier, Amsterdam.

11. Curran, T., and B. R. Franza, Jr. 1988. Fos and Jun: the AP-1 connection. Cell 55:395–397.

12. Curran, T., A. D. Miller, L. Zokas, and I. M. Verma. 1984. Viral and cellular Fos proteins: a comparative analysis. Cell 36:259–268.

13. Curran, T., G. Peters, C. van Bereven, N. M. Teich, and I. M. Verma. 1982. FBJ murine osteosarcoma virus: identification and molecular cloning of biologically active proviral DNA. J. Virol. 44:674–682.

14. Finley, D., and V. Chau. 1991. Ubiquitination. Annu. Rev. Cell Biol. 7:25–69.

15. Flanagan, W. M., B. Corthe´sy, R. J. Bram, and G. R. Crabtree. 1991. Nuclear association of a T cell transcription factor blocked by FK-506 and cyclosporin A. Nature (London) 352:803–807.

16. Girod, P.-A., T. P. Carpenter, S. van Nocker, M. L. Sullivan, and R. D. Vierstra. 1993. Homologs of the essential ubiquitin-conjugating enzymes UBC1, 4 and 5 in yeast are encoded by a multigene family in Arabidopsis thaliana. Plant J. 3:545–552.

17. Girod, P.-A., and R. D. Vierstra. 1993. A major ubiquitin-conjugating system in wheat germ extracts involves a 15-kDa ubiquitin-conjugating enzyme (E2)homologous to the yeast UBC4/UBC5 gene products. J. Biol. Chem. 268: 955–960.

17a.Gonen, H., and A. Ciechanover. Unpublished data.

18. Gonen, H., A. L. Schwartz, and A. Ciechanover. 1991. Purification and characterization of a novel protein that is required for degradation of N-aacetylated proteins by the ubiquitin system. J. Biol. Chem. 266:19221–19231.

19. Gropper, R., R. A. Brandt, S. Elias, C. F. Bearer, A. Mayer, A. L. Schwartz, and A. Ciechanover. 1991. The ubiquitin-activating enzyme, E1, is required for stress-induced lysosomal degradation of cellular proteins. J. Biol. Chem. 266:3602–3610.

20. Haas, A. L., J. V. Warms, A. Hershko, and I. A. Rose. 1982. Ubiquitinactivating enzyme: mechanism and role in protein-ubiquitin conjugation. J. Biol. Chem. 257:2543–2548.

21. Handley-Gearhart, P. M., J. S. Trausch-Azar, A. Ciechanover, and A. L. Schwartz. 1994. Rescue of the complex temperature-sensitive phenotype of Chinese hamster ovary E36ts20 cells by expression of the human ubiquitinactivating enzyme cDNA. Biochem. J. 304:1015–1020.

22. Heller, H., and A. Hershko. 1990. A ubiquitin-protein ligase specific for type III protein substrates. J. Biol. Chem. 265:6532–6535.

23. Hershko, A., D. Ganoth, J. Pehrson, R. E. Palazzo, and L. H. Cohen. 1991. Methylated ubiquitin inhibits cyclin degradation in clam embryo extracts. J. Biol. Chem. 266:16376–16379.

24. Hershko, A., and H. Heller. 1985. Occurrence of a polyubiquitin structure in ubiquitin-protein conjugates. Biochem. Biophys. Res. Commun. 128:1079– 1086.

25. Hershko, A., H. Heller, S. Elias, and A. Ciechanover. 1983. Components of the ubiquitin-protein ligase system: resolution, affinity purification, and role in protein breakdown. J. Biol. Chem. 258:8206–8214.

26. Hershko, A., and I. A. Rose. 1987. Ubiquitin-aldehyde: a general inhibitor of ubiquitin recycling processes. Proc. Natl. Acad. Sci. USA 84:1829–1833.

27. Hirai, S., H. Kawasaki, M. Yaniv, and K. Suzuki. 1991. Degradation of transcription factors, c-Jun and c-Fos, by calpain. FEBS Lett. 287:57–61.

28. Hochstrasser, M., M. J. Ellison, V. Chau, and A. Varshavsky. 1991. The short-lived MATa2 transcriptional regulator is ubiquitinated in vivo. Proc. Natl. Acad. Sci. USA 88:4606–4610.

29. Holt, J. C., T. Venkat Gopal, A. D. Moulton, and A. W. Nienhuis. 1986. Inducible production of c-Fos antisense RNA inhibits 3T3 cell proliferation. Proc. Natl. Acad. Sci. USA 83:4794–4798.

30. Huibregtse, J. M., M. Scheffner, and P. M. Howley. 1993. Cloning and expression of the cDNA for E6-AP, a protein that mediates the interaction of the human papillomavirus E6 oncoprotein with p53. Mol. Cell. Biol. 13:775–784.

31. Jariel-Encontre, I., M. Pariat, F. Martin, S. Carillo, C. Salvat, and M. Piechaczyk. 1995. Ubiquitinylation is not an absolute requirement for degradation of c-Jun by the 26S proteasome. J. Biol. Chem. 270:11623–11627.

32. Jentsch, S. 1992. The ubiquitin conjugating system. Annu. Rev. Genet. 26:177–205.

33. Jentsch, S., J. P. McGrath, and A. Varshavsky. 1987. The yeast DNA repair gene RAD6 encodes a ubiquitin-conjugating enzyme. Nature (London) 329: 131–134.

34. Johnson, R. S., B. M. Spiegelman, and V. Papaioannou. 1992. Pleiotropic effects of a null mutation in the c-fos proto-oncogene. Cell 71:577–586.

35. Johnston,N.L.,andR.E.Cohen. 1991. Uncoupling ubiquitin-protein conjugation from ubiquitin-dependent proteolysis by the use of b,g nonhydrolyzable ATP analogues. Biochemistry 39:7514–7522.

36. Kulka, R. G., B. Raboy, R. Schuster, H. A. Parag, G. Diamond, A. Ciechanover, and M. Marcus. 1988. A Chinese hamster cell cycle mutant arrested at G2 phase has a temperature-sensitive ubiquitin-activating enzyme, E1. J. Biol. Chem. 263:15726–15731.

37. Maki, Y., T. J. Bos, C. Davis, M. Starbuck, and P. K. Vogt. 1987. Avian sarcoma virus 17 carries the jun oncogene. Proc. Natl. Acad. Sci. USA 84:2848–2852.

38. Michalek, M. T., E. P. Grant, C. Gramm, A. L. Goldberg, and K. L. Rock. 1993. A role for the ubiquitin-dependent proteolytic pathway in MHC class I-restricted antigen presentation. Nature (London) 363:552–554.

39. Murakami, Y., S. Matsufuji, T. Kameji, S.-I. Hayashi, K. Igarashi, T. Tamura, K. Tanaka, and A. Ichihara. 1992. Ornithine decarboxylase is degraded by the 26S proteasome without ubiquitination. Nature (London) 360:597–599.

40. Murray, A. 1995. Cyclin ubiquitination: the destructive end of mitosis. Cell 81:149–152.

41. Nishizawa, M., K. Okazaki, N. Furuno, N. Watanabe, and N. Segata. 1992. The ‘‘second-codon rule’’ and autophosphorylation govern the stability and activity of Mos during meiotic cell cycle in Xenopus oocytes. EMBO J. 11:2433–2446.

42. Pagano, M., S. W. Tam, A. M. Theodoras, P. Beer-Romero, G. Del Sal, V. Chau, P. Rene´e Yew, G. F. Draetta, and M. Rolfe. 1995. Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. Science 269:682–685.

43. Palombella, V. J., O. J. Rando, A. L. Goldberg, and T. Maniatis. 1994. The ubiquitin-proteasome pathway is required for processing of NF-kB1 precursor protein and the activation of NF-kB. Cell 78:773–785.

44. Papavassiliou, A. G., K. Bohmann, and D. Bohmann. 1992. Determining the effect of inducible protein phosphorylation on the DNA-binding activity of transcription factors. Anal. Biochem. 203:302–309.           

45. Papavassiliou, A. G., M. Treier, C. Chavrier, and D. Bohmann. 1992. Targeted degradation of c-Fos, but not v-Fos, by a phosphorylated signal on c-Jun. Science 258:1941–1944.

46. Reiss, Y., and A. Hershko. 1990. Affinity purification of ubiquitin-protein ligase on immobilized protein substrates. J. Biol. Chem. 265:3685–3690.

47. Riabowol, K. T., R. J. Vosatka, E. B. Ziff, N. J. Lamb, and J. R. Feramisco. 1988. Microinjection of Fos-specific antibodies blocks DNA synthesis. Mol. Cell. Biol. 8:1670–1676.

48. Rock, K. L., C. Gramm, L. Rothstein, K. Clark, R. Stein, L. Dick, D. Hwang, and A. L. Goldberg. 1994. Inhibitors of the proteasome block degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 78:761–771.

49. Rolfe, M., P. Beer-Romero, S. Glass, J. Eckstein, I. Berdo, A. Theodoras, M. Pagano, and G. Draetta. 1995. Reconstitution of p53-ubiquitinylation reactions from purified components: the role of human ubiquitin-conjugating enzyme UBC4 and E6-associated protein (E6-AP). Proc. Natl. Acad. Sci. USA 92:3264–3268.

50. Scheffner, M., J. M. Huibregtse, and P. M. Howley. 1994. Identification of a human ubiquitin-conjugating enzyme that mediates the E6-AP-dependent ubiquitination of p53. Proc. Natl. Acad. Sci. USA 91:8797–8801.

51. Scheffner, M., J. M. Huibregtse, R. D. Vierstra, and P. M. Howley. 1993. The HPV-16 E6 and E6-AP complex function as a ubiquitin-protein ligase in the ubiquitination of p53. Cell 75:495–505.

52. Scheffner, M., U. Nuber, and J. M. Huibregtse. 1995. Protein ubiquitination involving an E1-E2-E3 enzyme ubiquitin thioesther cascade. Nature (London) 373:81–83.

53. Scheffner, M., B. A. Werness, J. M. Huibregtse, A. J. Levine, and P. M. Howley. 1990. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63:1129–1136.

54. Schuermann, M., M. Neuberg, J. B. Hunter, T. Jenuwein, R. P. Rysek, R. Bravo, and R. Mu¨ller. 1989. The leucine repeat motif in Fos protein mediates complex formation with Jun/AP-1 and is required for transformation. Cell 56:507–516.

55. Seufert, W., and S. Jentsch. 1990. Ubiquitin-conjugating enzymes UBC4 and UBC5 mediate selective degradation of short-lived and abnormal proteins. EMBO J. 9:543–550.

56. Shkedy, D., H. Gonen, B. Bercovich, and A. Ciechanover. 1994. Complete reconstitution of conjugation and subsequent degradation of the tumor suppressor protein p53 by purified components of the ubiquitin proteolytic system. FEBS Lett. 348:126–130.

57. Traenckner, E. B.-M., S. Wilk, and P. A. Baeuerle. 1994. A proteasome inhibitor prevents activation of NF-kB and stabilizes a newly phosphorylated form of IkB-a that is still bound to NF-kB. EMBO J. 13:5433–5441.

58. Treier, M., W. Seufert, and S. Jentsch. 1992. Drosophila Ubc1 encodes a highly conserved ubiquitin-conjugating enzyme involved in selective protein degradation. EMBO J. 11:367–372.

59. Treier,M.,L.M.Staszewski,and D.Bohmann.1994. Ubiquitin-dependent c-Jun degradation in vivo is mediated by the d domain. Cell 78:787–798.

60. van Beveren, C., F. van Straaten, T. Curran, R. Mu¨ller, and I. M. Verma. 1983. Analysis of FBJ-MuSV provirus and c-fos (mouse) gene reveals that viral and cellular fos gene products have different carboxy termini. Cell 32:1241–1255.

61. Van Straaten, F., R. Mu¨ller, T. Curran, C. van Beveren, and I. M. Verma. 1983. Complete nucleotide sequence of a human c-onc gene: deduced amino acid sequence of the human c-fos gene protein. Proc. Natl. Acad. Sci. USA 80:3183–3187.

62. Wade, W. F., Z. Z. Chen, R. Maki, S. McKercher, E. Palmer, J. C. Cambier, and J. H. Freed. 1989. Altered I-A protein-mediated transmembrane signaling in B cells that express truncated I-Ak protein. Proc. Natl. Acad. Sci. USA 86:6297–6301.

63. Wang, Z.-Q., C. Ovitt, A. Grigoriadis, U. Mohle-Steinlein, U. Ruther, and E. F. Wagner. 1992. Bone and hematopoietic defects in mice lacking c-Fos. Nature (London) 360:741–745.

64. Wong, T. K., and E. Neumann. 1982. Electric field-mediated gene transfer. Biochem. Biophys. Res. Commun. 107:584–587.